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The Neuron

o About 100 billion neurons in human brain
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Dendritic branches

Figure credits: Wikipedia
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Neuron in action |Il|

mmmmmmmmmmmmmmmmmmmmmmm

Dr. Konda Reddy Mopuri dlc-1/Artificial Neuron 3



Neuron in action |I.l|

ndan wstut ofTechlogy Hyderabsd

Dr. Konda Reddy Mopuri dlc-1/Artificial Neuron 4



Neuron in action

Dr. Konda Reddy Mopuri

dlc-1/Artificial Neuron



Neuron in action Hlll'H

,,,,,,,,,,,,,,,,,,,

Dr. Konda Reddy Mopuri dlc-1/Artificial Neuron 6



Neuron in action Hlﬁ'H
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Neurons in the brain have a hierarchy |||I.l|||
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Categorical judgments,
decision making Simple visual forms

edges, corners

To spinal cord
jer muscle 160-220 ms

Picture from Simon Thorpe
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Threshold Logic Unit \Il\
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@ First Mathematical Model for a neuron
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@ First Mathematical Model for a neuron -
@ McCulloch and Pitts, 1943 — MP neuron
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Threshold Logic Unit

@ First Mathematical Model for a neuron
@ McCulloch and Pitts, 1943 — MP neuron
® Boolean inputs and output

e {0,1}
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Threshold Logic Unit

@ First Mathematical Model for a neuron
@ McCulloch and Pitts, 1943 — MP neuron
® Boolean inputs and output

e {0,1}

= ]I(Z:CZ > 0)
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Threshold Logic Unit

@ Inputs can be of excitatory or inhibitory nature
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Threshold Logic Unit

@ Inputs can be of excitatory or inhibitory nature
@ When an inhibitory input is set (=1) output — 0
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Threshold Logic Unit

@ Inputs can be of excitatory or inhibitory nature

@ When an inhibitory input is set (=1) output — 0

@ Counts the number of ‘ON’ signals on the excitatory inputs versus the
inhibitory
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Threshold Logic Unit

=p— =P
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NOT

Example Boolean functions
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Threshold Logic Unit

@ let's implement simple functions
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Threshold Logic Unit

@ let's implement simple functions

@ xy’

X
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Threshold Logic Unit

@ let's implement simple functions
@ xy'

X

@ NOR
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Threshold Logic Unit

@ What one unit does? - Learn linear separation
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Threshold Logic Unit

@ What one unit does? - Learn linear separation
o line in 2D, plane in 3D, hyperplane in higher dimensions
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Threshold Logic Unit

@ What one unit does? - Learn linear separation
o line in 2D, plane in 3D, hyperplane in higher dimensions

@ No learning; heuristic approach

Dr. Konda Reddy Mopuri dlc-1/Artificial Neuron

13



Perceptron ||.l|

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

@ Frank Rosenblatt 1957 (American Psychologist)
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@ Frank Rosenblatt 1957 (American Psychologist)
@ Very crude biological model
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Perceptron \Il\
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@ Frank Rosenblatt 1957 (American Psychologist)
@ Very crude biological model

@ Similar to MP neuron - Performs linear classification
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Perceptron

@ Frank Rosenblatt 1957 (American Psychologist)
@ Very crude biological model
@ Similar to MP neuron - Performs linear classification

@ Inputs can be real, weights can be different for different i/p
components
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Perceptron

@ Frank Rosenblatt 1957 (American Psychologist)
@ Very crude biological model
@ Similar to MP neuron - Performs linear classification

@ Inputs can be real, weights can be different for different i/p
components

®

1 when , wiz; +b>0
o=

0 else
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Perceptron
@ For simplicity we consider +1 and -1 responses

{1 when 2 > 0
o(x) =

—1 else

f(x)=0o(wT -x+b)
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Perceptron

@ For simplicity we consider +1 and -1 responses

1 when 2 > 0
o(z) =
—1 else

f(x)=0o(wT -x+b)

@ In general, o(-) that follows a linear operation is called an activation
function
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Perceptron \I.l\

@ For simplicity we consider +1 and -1 responses

1 when 2 > 0
o(z) =
—1 else

f(x)=0o(wT -x+b)

@ In general, o(-) that follows a linear operation is called an activation
function

@ w are referred to as weights and b as the bias
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Perceptron vs. MP neuron

@ Perceptron is more general computational model
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Perceptron vs. MP neuron

@ Perceptron is more general computational model

@ Inputs can be real
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Perceptron vs. MP neuron

@ Perceptron is more general computational model
@ Inputs can be real

@ Weights are different on the input components
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Perceptron vs. MP neuron

@ Perceptron is more general computational model
@ Inputs can be real
@ Weights are different on the input components

@ Mechanism for learning weights
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Weights and Bias |I.l|
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@ Why are the weights important?

Bias b
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Figure credits: DeepAl
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Weights and Bias |I.l|
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@ Why are the weights important?
@ Why is it called ‘bias’? What does it capture?

Bias b
= Weights
Constant 1 \
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Figure credits: DeepAl
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Perceptron |I.l|
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Figure credits: Francois Fleuret
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Perceptron ||I.l||
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Figure credits: Francois Fleuret

Dr. Konda Reddy Mopuri dlc-1/Artificial Neuron 19



Perceptron Learning algorithm

@ Training data (2%,y%) € RP x {~1,1},i=1,...,N
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Perceptron Learning algorithm

@ Training data (2%,y%) € RP x {~1,1},i=1,...,N
@ Start with k< 1and wi =0
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Perceptron Learning algorithm

@ Training data (2%,y%) € RP x {~1,1},i=1,...,N

@ Start with k< 1 and wy =0

@ While 3 i € {1,2... N} such that y'(wy - x') < 0, update
Wki1 = Wk + Yy - x'
k+—k+1
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Perceptron Learning algorithm

@ Training data (2%,y%) € RP x {~1,1},i=1,...,N

Start with k < 1 and wi, =0

@ While 3 i € {1,2... N} such that y'(wy - x') < 0, update
Wki1 = Wk + Yy - x'
k+—k+1

®

@ Note that the bias b is absorbed as a component of w and x is
appended with 1 suitably
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Perceptron Learning Algorithm |I.l|
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» Colab Notebook: Perceptron-learning
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https://colab.research.google.com/drive/1TNavc9-jzJXc1N05l06KYfgaSmu7zqxN?usp=sharing

Perceptron Learning Algorithm

@ Convergence result: Can be shown that for linearly separable dataset,
algorithm converges after finite iterations
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Perceptron Learning Algorithm

@ Convergence result: Can be shown that for linearly separable dataset,
algorithm converges after finite iterations

@ Stops as soon as it finds a separating boundary
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Perceptron Learning Algorithm

@ Convergence result: Can be shown that for linearly separable dataset,
algorithm converges after finite iterations

@ Stops as soon as it finds a separating boundary

@ Other algorithms maximize the margin from boundary to the samples
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